Choice Under Certainty

Bruno Salcedo

Cornell University · Decision Theory · Spring 2017

decision theory

- Decision theory is about making choices
 - Normative aspect: what "rational" people should do
 - Descriptive aspect: what people do do
- Not surprisingly, it's been studied by economists, psychologist, and philosophers
- More recently, computer scientists have looked at it too
 - How should we design robots that make reasonable decisions
 - What about software agents acting on our behalf
 - Agents bidding for you on eBay
 - · Managed health care
 - Algorithmic issues in decision making
- This course will focus on normative aspects, informed by a computer science perspective

axiomatic decision theory

Standard (mathematical) approach to decision theory:

- Give axioms characterizing reasonable decisions
- Ones that any "rational" person should accept
- Then show show that these axioms characterize a particular approach to decision making
- For example, we will discuss Savage's axioms that characterize maximizing expected utility
- An issue that arises frequently:
- How to represent a decision problem

expressed preferences

- Let X be a set of alternatives
- Typical elements of X are denoted by $x, y, z \dots$
- For each pair x, y ∈ X we ask a subject whether he prefers x over y, y over x, or neither
- Notation: $x \succ y$ means the subject strictly prefers x over y
- The relation ≻ is a binary relation on X
- Example: $X = \{a, b, c\}, b \succ a, a \succ c, \text{ and } b \succ c$
- What if the individual also said $a \succ b$?

some axioms

- What are some (arguably) reasonable properties for a preference order?
- A binary relation > on X satisfies
 - Completeness if $x \not\succ y$ implies $y \succ x$
 - **Asymmetry** if $x \succ y$ implies $y \not\succ x$
 - **Acyclicity** if $x_1 \succ x_2 \succ \ldots \succ x_n$ implies $x_1 \neq x_n$
 - **Transitivity** if [$x \succ y$ and $y \succ z$] implies $x \succ z$
 - **Negative transitivity** if $[x \not\succ y \text{ and } y \not\succ z]$ implies $x \not\succ z$

- **Example:** $X = \{a, b, c\}, a \succ b, b \succ c, c \succ a$
 - Are such cyclic preferences reasonable?
 - How would this person choose an alternative from X?

preference relations

Definition: A binary relation > is a strict preference relation if it is asymmetric and negatively transitive

- **Example:** $X = \{a, b, c\}$, and \succ is a strict preference relation with $b \succ a$, and $a \succ c$.
- What can we tell about b vs. c?
 - Asymmetry implies $c \not\succ a$ and $a \not\succ b$
 - If $b \not\succ c$, then NT would imply $b \not\succ a$ ▼
 - Hence, it must be that $b \succ c$
 - Asymmetry then implies $c \not\succ b$

negative transitivity

Proposition: The binary relation \succ is NT iff $x \succ z$ implies that for all $y \in X$, $y \succ z$ or $x \succ y$

Proposition: If \succ is NT then $[x \not\succ y \text{ and } y \not\succ x]$ imply that for all z, $[z \succ x \text{ iff } z \succ y]$ and $[x \succ z \text{ iff } y \succ z]$

- **Example:** Let $X = \{1, 2, 3, ...\}$ and suppose that 1 is not ranked by \succ relative to any other alternative
- If ≻ satisfies NT, then there are no alternatives which can be ranked

weak preference and indifference

Definition: Given a relation \succ on X

- 1. x is weakly preferred to y, $x \succcurlyeq y$, iff $y \not\succ x$
- 2. x is indifferent to y, $x \sim y$, iff $y \not\succ x$ and $x \not\succ y$

Proposition: Given a relation \succ on X

- 1. \succ is asymmetric if and only if \succcurlyeq is complete
- 2. \succ is negatively transitive if and only if \succcurlyeq is transitive

- Proof of ⇒
 - 1. Asymmetry implies we cannot have both $x \succ y$ and $y \succ x$ Hence, at least one of $x \succcurlyeq y$ and $y \succcurlyeq x$ holds
 - 2. If $x \succcurlyeq y \succcurlyeq z$, then $z \not\succ y \not\succ x$ Therefore, by NT, $z \not\succ z$, i.e., $x \succcurlyeq z$
- Proof of ← will be on homework 1

transitivity

- Why do we care about transitivity?
- People's preferences sometimes fail transitivity
- However, if this is pointed out, most people think they should change their preferences
- **Example:** $X = \{a, b, c\}, a \succ b, b \succ c, c \succ a$
 - No undominated alternative in X
 - $-a \geq b$ and $b \geq c$, but $a \not\geq c$
 - Susceptible to money pumps
 - · Starting from a, pay a penny to switch from a to c
 - \cdot Then pay a penny to switch from c to b
 - \cdot Then pay a penny to switch from b to a

٠ . . .

transitivity and cycles

Proposition: If \succ is a strict preference relation, then it is transitive and acyclic

- Proof for transitivity:
 - Suppose $x \succ y \succ z$, we need to show $x \succ z$
 - Asymmetry implies $z \not\succ y$
 - If $x \not\succeq z$, NT would imply $x \not\succeq y$
 - Hence we must have $x \succ z$
- Proof for acyclicity:
 - Suppose towards a contradiction $x_1 \succ x_2 \succ ... \succ x_n$ and $x_1 = x_n$
 - Transitivity would imply $x_1 \succ x_n = x_1$, which contradicts asymmetry

examples

- **Example:** $X = \{a, b, c\}, a \succ b, b \succ c$, no other strict preference rankings
 - The relation ≻ is clearly acyclic (and asymmetric)
 - It is **not** transitive because $a \succ b \succ c$ but $a \not\succ c$
 - Can you come up with a relation that is acyclic and complete but not transitive?
- **Example:** $X = \{a, b, c\}, a \succ c$, no other strict preference rankings
 - The relation ➤ is clearly transitive and asymmetric
 - It is **not** NT because $a \not\succ b \not\succ c$ but $a \succ c$
 - Can you come up with an example of a relation that is NT but not transitive?
 - What if we also require that $x \succ y$ or $y \succ x$ whenever $x \neq y$?

no sugar in my coffee

- $X = \{1, 2, 3, ...\}$, number of grains of sugar in my coffee
- I do not like sugar, but I cannot distinguish less than one teaspoon
 - If $|x y| \le 10,000$, then $x \not\succ y$ and $y \not\succ x$
 - If x y > 10,000, then y > x
- - If $x \succ y$, then x < y and thus $y \not\succ x$
 - If $x \succ y \succ z$, then z x = (z y) + (y x) > 20,000, and thus $x \succ z$
- The induced indifference relation \sim is **not** transitive
 - $-1 \sim 2 \sim 3 \sim \ldots \sim 9,999 \sim 10,000 \sim 10,001$, but $1 \not\sim 10,001$

choice functions

- Hard to measure preferences beyond introspection and surveys
- Choices can be observed to some extent
- Maintained assumption: X is finite
- Let P(X) denote the set of all non-empty subsets of X
- Typical elements of P(X) are denoted by A, B, \ldots

Definition: A choice function is a function $c: P(X) \to P(X)$ such that $c(A) \subseteq A$ for every $A \in P(X)$

examples

- $X = \{a, b, c\}$
- By definition $c(\{a\}) = \{a\}, c(\{b\}) = \{b\} \text{ and } c(\{c\}) = \{c\}$

A	{ <i>x</i> , <i>y</i> }	$\{x,z\}$	{ <i>y</i> , <i>z</i> }	$\{x, y, z\}$
<i>c</i> (<i>A</i>)	{x}	$\{x,z\}$	{z}	??

examples

- $X = \{a, b, c\}$
- By definition $c(\{a\}) = \{a\}, c(\{b\}) = \{b\} \text{ and } c(\{c\}) = \{c\}$

А	{ <i>x</i> , <i>y</i> }	$\{x,z\}$	{ <i>y</i> , <i>z</i> }	$\{x, y, z\}$
<i>c</i> (<i>A</i>)	{ <i>x</i> }	$\{x,z\}$	{z}	$\{x,z\}$
c'(A)	{ <i>x</i> }	$\{x,z\}$	{ <i>y</i> }	$\{y,z\}$
c''(A)	{ <i>y</i> }	{ <i>z</i> }	{ <i>y</i> }	{ <i>y</i> }
c'''(A)	$\{x,y\}$	$\{x,z\}$	$\{y,z\}$	$\{x, y, z\}$

to some extent

- Knowledge of a choice function requires observing
 - Choices from different alternative sets ceteris paribus
 - Choices from all elements of P(X)
 - All possibly chosen alternatives from each element of P(X)

choices induced by preferences

- - Presumably it would never choose dominated alternatives
 - Any undominated alternative would be acceptable

Definition: The choice function induced by a preference \succ on X is the function $c(\cdot, \succ) : P(X) \to P(X)$ given by

$$c(A,\succ) = \{x \in A \mid \text{for all } y \in A, y \not\succ x\}$$

• Example: $X = \{a, b, c\}, a \succ b, b \succ c, \text{ and } a \succ c$

$$-c({a,b},\succ)={a}, c({a,c},\succ)={a}, c({a,b,c},\succ)={a}$$

$$- c(\{b, c\}, \succ) = \{b\}$$

acyclicity and choices

Proposition: If \succ is acyclic and X is finite, then $c(\cdot, \succ)$ is a choice function

- Proof that $c(A, \succ) \neq \emptyset$ for all $A \in P(X)$
 - Let $m < \infty$ be the number of alternatives in A
 - Suppose towards a contradiction that $c(A, \succ) = \emptyset$ and fix some $x_1 \in A$
 - There would exist $x_2 \in A$ such that $x_2 \succ x_1$ and $x_2 \neq x_1$ (why?)
 - There would exist $x_3 \in A$ such that $x_3 \succ x_2 \succ x_1$ and $x_3 \neq x_1, x_2$:
 - There would exist $x_{m+1} \in A$ such that $x_{m+1} \succ \ldots \succ x_3 \succ x_2 \succ x_1$ and $x_{m+1} \neq x_1, x_2, \ldots x_m$
- If X is finite and $c(\cdot, \succ)$ is a choice function, then \succ is acyclic

rationalization

- What are the implications of preferences in terms of choices?
- If c is an arbitrary choice function, need there be a preference \succ such that $c(\cdot) = c(\cdot, \succ)$?
- **Example:** $X = \{a, b, c\}, c(\{a, b, c\}) = c(\{a\}) = \{a\} \text{ and } c(\{a, b\}) = \{b\}$
 - $-c({a}) = {a}$ requires $a \not\succ a$
 - Then $c({a,b}) = {b}$ requires $b \succ a$
 - But then $c({a, b, c}) = {a}$ is not possible
 - Is there a context where these choices would be reasonable?

Where do we stand?

If \succ is a preference order (negatively transitive + asymmetric) on a set X, then we can partition the elements of X into "indifference classes" X_1, \ldots, X_k such that " $X_1 \succ X_2 \succ \ldots \succ X_k$ "

- more precisely, if $x, y \in X_i$, then $x \sim y$ (i.e., $x \not\succ y$ and $y \not\succ x$)
- if $x \in X_i$ and $y \in X_i$ where i < j, then $x \succ y$

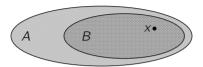
Now suppose that \succ_{po} is such that $x \succ_{po} z$, and y is incomparable to x and z ("po" = "partial order")

- then \succ_{po} can't be a preference order $(x \sim_{po} y, y \sim_{po} z, \text{ but } x \succ_{po} z)$
- But ≻_{po} is acyclic
- So there is a choice function c induced by \succ_{po} : $c(\{x,z\}) = x$, $c(\{x,y\}) = \{x,y\}$, $c(\{y,z\}) = \{y,z\}$, $c(\{x,y,z\}) = \{x,y\}$

What properties does a choice function c induced by a preference order have?

- We'll consider two properties of a choice function c that are necessary and sufficient for c to be induced by a preference order
 - every choice function induced by a preference order has these properties.
 - if a choice function c has these properties, then $c(\,\cdot\,)=c(\,\cdot\,,\succ)$ for some preference order \succ

Sen's α



Sen's axiom α : If $x \in B \subseteq A$ and $x \in c(A)$, then $x \in c(B)$

If the smartest student in the U.S. is from Cornell, then he/she is also the smartest student at Cornell.

Proposition: For any preference relation \succ , the induced choice function $c(\cdot, \succ)$ satisfies axiom α

• Proof:

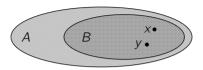
- Suppose $x \in B \subseteq A \subseteq X$ and $x \in c(A, \succ)$, but $x \notin c(B, \succ)$
- $-x \notin c(B,\succ)$ implies that $y \succ x$ for some $y \in B$
- Since $y \in A$, then $x \notin c(A, \succ)$ ▼

Actually, even if \succ is acyclic, $c(\cdot, \succ)$ satisfies axiom α

• The same proof applies without change!

So if \succ is a preference order, there must be additional properties that $c(\cdot, \succ)$ satisfies.

Sen's β



Sen's axiom β : If $B \subseteq A$, $x, y \in c(B)$, and $y \in c(A)$, then $x \in c(A)$

If the smartest student in the U.S. is from Cornell, then all the smartest students at Cornell are among the smartest students in the U.S.

Proposition: For any preference relation \succ , the induced choice function $c(\cdot, \succ)$ satisfies axiom β

• Proof:

- Suppose $x, y \in B \subseteq A \subseteq X$, $x \in c(B, \succ)$, and $y \in c(A, \succ)$
- $-x, y \in c(B, \succ)$ implies that $y \not\succ x$
- $-y \in c(A, \succ)$ implies that $z \not\succ y$ for all $z \in A$
- NT then implies that $z \not\succ x$ for all $z \in A$
- Hence, $x ∈ c(A, \succ)$

 $c = c(\cdot, \succ_{po})$ does *not* satisfy axiom β :

• $z \in c(\{y, z\}), y \in c(\{x, y, z\}), \text{ but } z \notin c(\{x, y, z\})$

- If $c = c(\cdot, \succ)$ and \succ is a preference order, then it satisfies axioms α and β
- Are there any more requirements? No

Theorem:

- (a) If \succ is a preference relation on a finite set X, then $c(\,\cdot\,) = c(\,\cdot\,,\,\succ)$ is a choice function satisfying axioms α and β
- (b) If c is a choice function on X satisfying axioms α and β , then $c(\cdot) = c(\cdot, \succ)$ for a unique preference relation \succ

We've already shown part (a).

- But note that we need X to be finite. Why?
 - To ensure that \succ is acyclic, and thus to ensure that $c(A, \succ)$ is nonempty if A is nonempty.

We need to work a little to prove part (b) ...

revealed preference

- Given a choice function c satisfying axioms α and β , we want to find a preference relation \succ such that $c(\cdot) = c(\cdot, \succ)$
 - Given x and y, how can we figure out if x > y or y > x?
 - Look at $c(\lbrace x, y \rbrace)!$

Definition: Given a choice function c, x is revealed preferred to y if $x \neq y$ and $c(\{x, y\}) = \{x\}$

- Let \succ denote the revealed preferences from c, we need to show
 - 1. $c(A) \subseteq c(A, \succ)$ for all $A \in P(X)$
 - 2. $c(A, \succ) \subseteq c(A)$ for all $A \in P(X)$
 - 3. \succ is asymmetric
 - 4. ≻ is negatively transitive

proof

1.
$$c(A) \subseteq c(A, \succ)$$
 for all $A \in P(X)$

- Let $x \in c(A)$
- By Axiom α , $x \in c(\{x, y\})$ for all $y \in A$
- Hence, $y \not\succ x$ for all $y \in A$

2.
$$c(A, \succ) \subseteq c(A)$$
 for all $A \in P(X)$

- Let $x \in c(A, \succ)$ and take any $y \in c(A)$
- Axiom α implies $y \in c(\{x, y\})$
- Since $x \in c(A, \succ)$, $y \not\succ x$ and thus $c(\{x, y\}) \neq \{y\}$
- Therefore $c(\lbrace x, y \rbrace) = \lbrace x, y \rbrace$
- Axiom β then implies $x \in c(A)$

proof

3. ≻ is asymmetric

- $x \not\succ x$ by construction
- If $x \succ y$ then $c(\lbrace x, y \rbrace) = \lbrace x \rbrace$, so $c(\lbrace x, y \rbrace) \neq \lbrace y \rbrace$, hence $y \not\succ x$
- 4. ≻ is negatively transitive
 - Suppose that $z \not\succ y \not\succ x$; we want to show that $z \not\succ x$; that is, $x \in c(\{x,z\})$
 - By Axiom α , it suffices to show that $x \in c(\{x, y, z\})$
 - If $y \in c(\{x, y, z\})$

Since $y \not\succeq x$, we must have $x \in c(\{x, y\})$

Axiom β then implies $x \in c(\{x, y, z\})$

- If $z \in c(\{x, y, z\})$ then an analogous argument implies $y \in c(\{x, y, z\})$ and thus, $x \in c(\{x, y, z\})$
- If $y \notin c(\{x, y, z\})$ and $z \notin c(\{x, y, z\})$ then $c(\{x, y, z\}) = \{x\}$